

Lab no 06: XOR gate and Half adder using a NAND IC

The purpose of this Lab is to:

- Design an XOR gate and simulate it on Proteus simulator.
- Use NAND IC to implement an XOR gate on the breadboard.
- Design and Implement Half adder.

Required Components

- Breadboard.
- 5V battery.
- Jumper wires.
- 330-ohm Resistor.
- LEDs.
- 2 NAND IC 7400.

Parts:

- 1. Logic Gate Simulation.
- 2. Design and Implement an XOR gate using NAND IC.
- 3. Design and Implement Half adder.

Part 1: Logic Gate Simulation

In this Part, you will learn to use proteus for circuit simulation.

- Download Proteus software (<u>Here</u>).
- Install Proteus software. (<u>Steps</u>)
- Open a new project

click file -> new project or

- Add device and select the following items
 - 1. Logic-toggle (switch)
 - 2. 7400 (NAND IC)
 - 3. Logic-probe (output)

Project - Proteus 8 Professional - Schematic Capture				
lit View Tool Design Graph Debug Library Template System Help				
≝ 꽤 ^ ◙ ◙ ≪ 疑 ◙ § ? 2 ⊞ + + + + + + + + + + + + + + + + + +				
chematic capture x				
ES Pick Devices	_			? ×
Keywor <u>d</u> s:	Besults (251):			74S80 Preview:
nand	Device	Library	Description	 Schematic Model [74NAND2.MDF]
Match Whole Words?	24500	745	Quadruple 2-Input Positive-NAND Gates	
Show only parts with models?	74S00.DM	745	Quadruple 2-Input Positive-NAND Gates	
Catogory	74S00.IEC	74S	Quadruple 2-Input Positive-NAND Gates	
Calegoly.	74503	74S	Quadruple 2-Input Positive-NAND Buffer With Open-Collector Outputs	
CMOS 4000 series	74S03.IEC	74S	Quadruple 2-Input Positive-NAND Buffer With Open-Collector Outputs	
Modelling Primitives	74S10	74S	Triple 3-Input Positive-NAND Gates	
Optoelectronics	74S10.DM	74S	Triple 3-Input Positive-NAND Gates	
TTI 74 series	74S10.IEC	74S	Triple 3-Input Positive-NAND Gates	
TTL 74ALS series	74S132	74S	Quad 2-Input Schmitt-Triggered NAND Gates 2	2
TTL 74AS series	74S132.DM	74S	Quad 2-Input Schmitt-Triggered NAND Gates	
TTL 74F series	74S132.IEC	74S	Quad 2-Input Schmitt-Triggered NAND Gates	
TTL 74HCT series	74S133	74S	13-Input Positive-NAND Gates	
TTL 74LS series	74S133.DM	74S	13-Input Positive-NAND Gates	
TTL 74S series	74S133.IEC	74S	13-Input Positive-NAND Gates	
	74S134	74S	12-Input Positive NAND Gate With Tristate Output	
1	74S134.DM	74S	12-Input Positive NAND Gate With Tristate Output	
	74S134.IEC	74S	12-Input Positive NAND Gate With Tristate Output	PCB Preview
	74S140	74S	Dual 4-input positive-NAND 50-Ohm line drivers	
	74S140.DM	74S	Dual 4-input positive-NAND 50-Ohm line drivers	0.3in
	74S140.IEC	74S	Dual 4-input positive-NAND 50-Ohm line drivers	
	74S20	74S	Dual 4-Input Positive-NAND Gates	
	74S20.DM	74S	Dual 4-Input Positive-NAND Gates	₩ ₩ ₩
	74S20.IEC	74S	Dual 4-Input Positive-NAND Gates	() () () () () () () () () () () () () (
	74522	745	Dual 4-Input Open-Collector NAND Gate	
Sub-category:	74S22.UM	745	Dual 4-Input Open-Collector NAND Gate	(a) (b)
	74522.IEU 74620	740	Dian reinput Open-Collector NAND Gate	l Si l
	74530	740	anipul positive NAND gates	ö 🎽 👗
	74530.DM	740	Princet positive-HAND gates	(0)
	74537	745	Dund 2-input positive-NAND buffers	
	74S37 DM	745	Guad 2 mps positive VeXID buffare	• •
	74S37 IEC	745	Quad 2-input positive-NAND buffers	
	74538	74S	Quad 2-input positive-NAND buffers with open collector outputs	2
Manufacturer	74S38.IEC	74S	Quad 2-input positive-NAND buffers with open collector outputs	
monoconer.	74540	74S	Dual 4-Input NAND Gate With Buffered Output	
	74S40.DM	74S	Dual 4-Input NAND Gate With Buffered Output	
	74S40.IEC	74S	Dual 4-Input NAND Gate With Buffered Output	DIL14 V
	NAND	ACTIVE	Simple 2 Input NAND Gete	
	ALABIT 12	DOLARDI C	MAND Alexatics AND) Cate Dialited Drimitics Model	V UK Cancel

Page 2 of 8

Build the XOR gate using NAND gates, as shown in Figure.1. Where
 A and B are inputs and Q is the output.

Figure 1: XOR using NAND

- Connect inputs (A and B) to the logic-toggle, as shown in Figure 2.
- Connect the output (Q) to the logic-prob, as shown in Figure 2.
- Run and Simulate the XOR-gate Circuit.
- Verify the XOR-gate output(Q) by toggling the inputs (A and B).

Figure 2:XOR using NAND gates on Proteus Simulator.

Part 2: Design and Implement an XOR gate using NAND.

A 7400 is a quad NAND gates chip. This means it contains 4 NAND gates inside it, as shown in Figure 3.

Figure 3. NAND Gate IC, Schematic, Pin Configuration, and truth table.

In Figure 4, Input A is represented by the green wire and Input B is represented by the yellow wire.

<u>Steps:</u>

- As shown in Figure 3, 7400 Pin 7 is the ground and Pin 14 is VCC. So, <u>Connect</u> 7400 Pin 7 to the ground line, and Pin 14 to the 5V power line, as shown in Figure 4.
- <u>Connect</u> the Inputs of the first NAND gate, Input A1 (Pin 1) to the Ground (logic 0) the yellow wire (A), and Input B1 (Pin 2) to the 5V power (logic 1) the Green wire(B).
- <u>Connect</u> the Inputs of the second NAND gate, Input A2 (Pin 4) to Output Y1 (Pin 3) and Input B2 (Pin 5) to the Ground (logic 0) the yellow wire (B).
- <u>Connect</u> the Inputs of the third NAND gate, Input A3 (Pin 9) to Output Y2 (Pin 6), the purple wire. <u>Connect</u> Input B3 (Pin 10) to Output Y4 (Pin 11).
- 5) Connect the Inputs of the fourth NAND gate, Input A4 (Pin 12) to Output Y1 (Pin 3), the orange wire. <u>Connect</u> Input B4 (Pin 13) to the 5V power (logic 1), the green wire (A).

CS221: Logic Design

- 6) Output Y3 (Pin 8) represent Q (output XOR), <u>Connect</u> the output to a LED, as shown in Figure 4.
- 7) Verify the output of the Circuit. When LED is ON/OFF?

Figure 3:NAND IC to design XOR gate in breadboard.

CS221: Logic Design

0

0

Part 3: Design and Implement Half adder.

The half-adder accepts two binary digits on its inputs and produces two binary digits on its outputs—a sum bit and a carry bit.

Half-Adder

Simulate Half-adder on Proteus:

- Connect inputs (A and B) to the logic-toggle, as shown in Figure 5.
- Connect the output (SUM and CARRY) to the logic-prob, as shown in Figure 5.
- Run and Simulate the Half Adder.
- Verify the Half Adder outputs (SUM and CARRY) by toggling the inputs (A and B).

Figure 5: Half Adder using NAND by Proteus

CS221: Logic Design

In Figure 6, Input A is represented by the green wire and Input B is represented by the yellow wire.

<u>Steps:</u>

<u>connect first nand ic</u>

- 1) As shown in Figure 3, 7400 Pin 7 is the ground and Pin 14 is VCC. So, <u>**Connect**</u> 7400 Pin 7 to the ground line, and Pin 14 to the 5V power line, as shown in Figure 6.
- <u>Connect</u> the Inputs of the first NAND gate, Input A1 (Pin 1) to the Ground (logic 0) the yellow wire (A), and Input B1 (Pin 2) to the 5V power (logic 1) the Green wire(B).
- 3) <u>Connect</u> the Inputs of the second NAND gate, Input A2 (Pin 4) to Output Y1 (Pin 3) and Input B2 (Pin 5) to the Ground (logic 0) the yellow wire (B).
- <u>Connect</u> the Inputs of the third NAND gate, Input A3 (Pin 9) to Output Y2 (Pin 6), the purple wire. <u>Connect</u> Input B3 (Pin 10) to Output Y4 (Pin 11).
- Connect the Inputs of the fourth NAND gate, Input A4 (Pin 12) to Output Y1 (Pin 3), the orange wire. <u>Connect</u> Input B4 (Pin 13) to the 5V power (logic 1), the green wire (A).
- 6) Output Y3 (Pin 8) represent SUM, <u>**Connect**</u> the output to a blue LED, as shown in Figure 6.
- <u>connect second nand ic</u>
 - 1) <u>Connect</u> the Inputs of the first NAND gate, Input A1 (Pin 1) to Output Y1 (Pin 3) in the first ic and Input B1 (Pin 2) to Output Y1 (Pin 3) in the first ic
 - 2) Output Y1 (Pin 3) represent CARRY, <u>Connect</u> the output to a red LED, as shown in Figure 6.

Faculty of Computers and Artificial Intelligence

CS221: Logic Design

Figure 6:NAND IC to design Half Adder on breadboard.

<u>Note</u>

- ✤ Lab XOR gate using a NAND IC video (<u>Here</u>)
- ✤ Install Proteus software (<u>Here</u>)
- Example on Proteus (<u>Here</u>)
- ICS datasheets, Simulator, Proteus download (<u>Here</u>)
- XOR using NAND Gate XOR using NAND Gate | Tinkercad
- Half Adder using NAND half adder using NAND Gate | Tinkercad